
Introduction

Land use structure optimization, also known as 
land use quantitative structure optimization, refers to 
an optimization process during which one or multiple 

benefits are taken as the optimizing objectives under 
a series of constraints of a certain region. This is to 
allocate the regional land resources into various types  
of land use so that proper arrangements of the regional 
land resources can be achieved temporally and 
quantitatively.

In the recent years, many investigators have launched 
their studies with a focus on modeling and methodologies 
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for the environment, ecology, agriculture, and land use 
structure optimization. Deb et al. [1] recognized a few 
recent efforts and discuss a number of viable directions 
for developing a potential EMO algorithm for solving 
multi-objective optimization problems. Gobeyn et al. 
[2] presents a methodology, illustrated with the example 
of river pollution in Ecuador, using a simple genetic 
algorithm to identify well performing SDMs by means 
of an input variable selection. Herzig A. et al. [3] used  
the Land-Use Management Support System to assess 
land-use development scenarios for the potential  
irrigable areas Black Creek and White Rock in 
the Ruamahanga catchment. The results show that 
intensification and expansion of dairy farming and arable 
cropping increased production levels, but also nitrate 
leaching and greenhouse gas emissions. Ibrahim et al. [4] 
have proposed an improved NSGA-III algorithm, called 
EliteNSGA-III, to improve the diversity and accuracy of 
the NSGA-III algorithm. This algorithm maintains an 
elite population archive to preserve previously generated 
elite solutions that would probably be eliminated by 
NSGA-III’s selection procedure. Valcu et al. [5] assessed 
empirically how agricultural lands should be used to 
produce the highest valued outputs, which include 
food, energy, and environmental goods and services. 
In addition, some investigators have applied the linear 
programming method to perform studies on land use 
structure optimization [6]. Based on their studies on the 
suitability of optimal linear programming for land use 
planning, Piyush Kumar et al. [7] constructed a mixed 
integer linear programming approach for land use 
planning that limit urban sprawl. Mahmoud M. et al.  
[8] aims at developing novel algorithms through 
hybridizing Tabu search (TS), genetic algorithm (GA), 
GRASP, and simulated annealing (SA) and examining 
their quality and efficiency in practice. The outputs 
showed that the quality and efficiency of LLTGRGATS 
were slightly better than those of SVNS, and it can be 
considered as a favorable tool for the land-use planning 
process. Tomasz Noszczyk et al. [9] studied changes 
in areas of four land use variables in the Małopolska 
Voivodeship of Poland using statistical methods.  
The results show significant dependence of the current 
land use values on the past values from the previous two 
years.

In general, while a large number of research results 
in the field of land use structure optimization have been 
obtained in both China and other countries and some 
practical application results have also been obtained, 
many problems and shortcomings still remain. A majority 
of the previous studies mainly applied such mathematical 
models as linear programming method, objective 
programming methods, and systemic dynamic method 
etc. and integrated these methods for optimization. 
However, these methods are difficult for resolving 
the complicated multi-objective optimization problem 
under constraint conditions. The differential evolution 
algorithm is a random, parallel, and direct searching 
algorithm. It is suitable to be applied in solving the 

complicated optimization problems that cannot be solved 
with traditional and routine mathematical optimization 
methods. It has been successfully applied in some fields 
owing to its easy usefulness, robustness, and powerful 
ability of global optimization. 

Land use structure optimization involves multi-
objective and multiple constraints. Differential evolution 
algorithm has the characteristics of solving complex 
problems, and has a promising potential to be applied in 
land use structure optimization. In recent years, some 
investigators began applying the differential evolution 
algorithm in conducting optimal crop cultivation 
planning [10-11] and have obtained some successful 
results. However, few studies with a focus on the  
regional land use structure optimization have been 
reported. In China, the differential evolution algorithm  
has been mainly applied in the fields of artificial 
intelligence, chemical industry, biology, data mining, 
and image treatment, etc. No studies with a focus on  
the application of differential evolution algorithms in 
land use structure optimization have been reported in 
the literature. While a lot of research results have been 
obtained with differential evolution algorithm since it 
was proposed, as compared to other evolution algorithms, 
it exhibits more obvious advantages in solving the 
optimization problem of biology and agriculture. 
However, there is still plenty of room for further 
improvement for this algorithm, i.e., this algorithm needs 
to be further improved and perfected regarding parameter 
optimization.  

The goal of this paper is to optimize the structure 
of land use in Dawa County, China, in 2010-2020 and 
propose an approach to optimize land use structure. 
To this end, the improved multi-objective differential 
evolution algorithm was established and the model that 
optimized the structure of land use in the study area was 
developed.

Material and Methods

Study Area

Dawa County was selected as the study area due 
to its rich land-use types that include cultivated land, 
construction land, forest land, wetland, waters, and 
tidal flats, and can provide reliable data for simulating 
the improved differential evolution algorithm. The 
results obtained in Dawa County by applying the model 
proposed in this paper can be extended to other regions 
there are more or fewer land-use types.

Dawa County is located in southwest Liaoning 
Province. Its west faces the Bohai Sea and Liaodong 
Bay. Geologically, Dawa is located between 
121°48′E-122°21′E and 40°41′N-41°09′N and displays  
the typical characteristics of coastal ecology. The total 
land area of the entire area is 1,387 km2. A reasonable 
land use structure is very important for regional land 
resource management. 
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Data

The acquisition date of a topographic map with 
a scale of 1:100,000 and other non-spatial data was 
2010 (Table 1). So, the Landsat TM remote sensing 
images used in this study were acquired in 2010 
(Table 1) in order to maintain the consistency of data 
acquisition date. In addition, the natural status data of 
meteorological, hydrological, soil, and vegetation, and 
the statistical data of social-economic data in the study 
area were also used (Table 1). Three Landsat TM images 
taken in the study area were selected and montaged. The 
geometric registration of imagery was conducted using 
a topographical map (1:100000) as the datum mark. The 
mosaic of remote sensing images was made using ENVI 
5.0 software [12]. The images were classified by relying 
mainly on unsupervised classification with the assistance 
of visual interpretation. During the classification process, 
the images were firstly and automatically classified into 
15 types using the ISODATA unsupervised classification. 
They were then combined into six types of land that were 
needed (cultivated land, construction land, forest land, 
wetland, waters, and tidal flats) to obtain the preliminary 
classification results in the study area. These preliminary 
results were further treated after classification. According 
to the field survey results, GPS data, the current land use 
status map, and other related data, the confusion pixels 
and misclassification pixels were modified by visual 
interpretation. The classification results of land-use in 
the study area were finally obtained. Furthermore, the 
other natural status data and the statistical data of the 
social economy in the study area were also collected and 
used for the establishment of restriction conditions for 
conducting the optimal allocation of the land resources.

Methods

Principle of Differential Evolution Algorithm

In recent years, there has been an ever-increasing 
interest in the area of a differential evolution algorithm 
proposed by Rainer Storn and Kenneth Price [13-14]. 
The advantages of differential evolution algorithm for 
solving global design problems include global solution-
finding property, powerful search capability, fewer 
control parameters, ease of use, and high convergence 
characteristics [15-18]. The differential evolution 
algorithm is a population-based and stochastic global 
optimizer that can work reliably in non-linear and 
multimodal environments [16-19]. 

Differential evolution algorithm includes initial 
population, mutation, crossover, and selection. More 
specifically, the basic strategies of a differential evolution 
algorithm can be described as follows:

Initial Population

Prior to conducting the major operational procedures, 
i.e., mutation, crossover, and selection with a differential 
evolution algorithm, optimizing the location management 
needs to be carried out, i.e., the initial population in the 
NP (population for each generation) scale is randomly 
created in the definition domain space of the variable 
[17], the equation is as follows:

, min max min(0,1) ( )i jx x rand x x= + × −
    (1)

…where xi,j is the J component of the i individual; Xmax 
and Xmin are the maximal and minimal value of the 
variable, respectively; rand (0.1) is the random number of 
the even distribution above the [0,1] region; i represents 
the individual serial number of the population, I = 1,2, 
….NP; and j represents the individual serial number of 
the variable, j = 1,2,….D [26].

Mutation

During the optimization process with differential 
evolution algorithm, the most basic mutation component is 
the differential vector derived from the parent generation. 
Each differential vector includes two different individual 
vectors (xt

r1, x
t
r2) [26]. The equation is as follows:

1,2 1 2
t t

r r rD x x= −
                       (2)

…where r1 and r2 are the serial numbers of two different 
individual vectors among the population of the t 
generation. The resulting differential vector is combined 
with another randomly selected individual vector to form 
a variable vector. For every target vector xt

i , the equation 
is as follows:

           (3)

…where vi
t+1 represents the resulting variable vector; 

r1, r2, r3, ∈ {1,2,...,NP} represent the integers that are 
different from each other and also different from the 
serial numbers of the target vector i. Thus, the population 

Table 1. Data sources used in this study.

Acquisition Data types Spatial resolution Data source

09-20-2010 TM5 30 m Computer network information center, Chinese Academy of Science

07-28-2010 Topographic maps 1:100000 Land Resources Bureau of Dawa County

2000-2010 Non-spatial data — Land Resources Bureau of Dawa County
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size (NP) > 4 is generally needed. F represents the 
magnification factor and the range of numerical value 
is [0, 2], which is used to control the magnification 
magnitude of differential vectors [26]. 

Crossover

The procedure of crossover of the variable vector 
vi

t+1 resulted from the mutation operation with the 
corresponding individual vector from the parent 
generation of the population to create the experimental 
individual vector xi

t from the parent generation of 
the population to generate the experimental individual 
vector ui

t+1. In order to ensure the evolution of xi
t into 

the next generation, the contribution of at least one  
ui

t+1 vector must be firstly ensured through random 
selection. For the other individual vectors, whether  
the contribution to vector ui

t+1 is made by either vector 
vi

t+1 or vector xi
t , which can be determined by using 

the crossover probability factor CR (Wang, 2015).  
The equations are as follows:

              
(4)

…where rand( j) is the random number within the [0,1]
region; j is the variable j; and CR represents the crossover 
probability factor and its values of range is generally  
set as [0,1]. rand( j) ∈ [1,2,...,D], represent the serial 
number of the randomly selected dimension variable  
[26].

Selection

The selection procedures are as follows: the resulting 
individual vector ui

t+1 obtained after mutation operation 
and crossover operation is compared with the original 
individual vector xi

t, if the fitness of the experimental 
vector ui

t+1 is better than that of the original individual 
vector xi

t , then it is selected as the new individual and 
kept until the next generation of the population. 
Otherwise, the original vector xi

t would be used as 
the new individual and kept until the next generation 
population. Taking the minimized target function  
value as an example [26], the equations are as  
follows: 

     (5)

…where f(ui
t+1) and f(xi

t ) are the fitness (the target 
function values) of the individuals ui

t+1 and xi
t. 

When, f(ui
t+1) < f(xi

t ), the fitness of individual ui
t+1 is 

better than that of xi
t; when f(ui

t+1) > f(xi
t ), the fitness 

of individual xi
t is superior to that of ui

t+1 [26].

Improved Differential Evolution Algorithm

Improving Control Parameters

The differential evolution algorithm mainly involves 
four controlling parameters, including population size 
(NP), number of individual (variable) dimensions (D), 
differential vector zooming factor (F), and crossing 
rate (CR). Compared with NP and D, F and CR have a 
higher impact on optimization property of this algorithm. 
Among them, the dimensional number of variable D can 
be generally determined according to the real problem; 
the population size NP is usually between 5D and 10D. 
The value of zooming factor F is set as [0, 2] and the 
value of crossing rate CR is set as [0, 1].   

In recent years, many investigators have conducted 
studies on the adaptability of determining the parameters 
for differential evolution algorithms [18-22] while aiming 
to determine the parameters that are independent from 
the optimization problem and to enable the controlling 
parameters to change their adaptability within the 
specified range during the evolution process. In this 
study, based on the current studies, we proposed the 
improvement strategy for two controlling parameters, 
zooming factor F and crossing rate CR, aiming to make 
the optimized results obtained more reasonable.   

The Adaptability of Zooming Factor F

Previously, some researchers selected the fixed 
coefficient for zooming factor in differential evolution 
algorithm, i.e., the zooming factor was unchanged from 
the beginning to the end during the optimization process. 
By doing so, the factor may cause more interference, 
and it is relatively difficult to determine the proper 
parameters. Thus, it is necessary to formulate the 
adaptability strategy for zooming factor F. This strategy 
can provide the optimal F value for each solution. In this 
study, we applied the adaptability strategy for zooming 
factor proposed by Wu [27].

The basic idea of this strategy is that according to 
three individuals randomly selected during the mutation 
operation, the corresponding positions in the searching 
space derived from adaptability adjust the size of the 
zooming factor F [27]. If these randomly selected 
individuals are closer to each other in the searching 
space, the differential vector generated will be smaller 
and at the same time, the disturbance quantity of various 
dimensional strategy variables is also smaller. In this case, 
the larger value for zooming factor F should be selected. 
Otherwise, because the disturbance quantity is small, 
it does not play a role in mutation, leading to the early 
falling into the regional searching in the early stage of 
evolution [27]. If the positions of three randomly selected 
individuals in the searching space are more disperse, the 
value of differential vector generated will be too large, 
and the disturbance quantity of various dimensional 
strategy variables is larger. In this case, the smaller 
value for zooming factor should be selected to control 
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the larger disturbance quantity. This will be favorable 
for conducting regional searching with this algorithm 
[27]. Therefore, the selected value for zooming factor 
F should be adaptive. The changes of factor F can be 
adjusted according to relative positions in the searching 
space of two individuals, and the differential vector can 
be adjusted dynamically so that the regional searching 
and global searching can reach a balanced state and the 
uncertain influence caused by an artificially assigned 
factor can be avoided [27]. The details of adaptability 
strategy are as follows: 

( ) b a
i l u l

c a

f fF F F F
f f

−= + −
−              (6)

…where fa, fb, and fc, are the adaptabilities (target function 
values) of individual vectors xa

t, xb
t, and xc

t, respectively. 
Among which, three randomly selected individuals that 
are used for mutation are ranked in order according to the 
size of their adaptabilities. The vector of the individual 
with the best adaptability is designated as xa

t , the vector 
of the individual with the second best adaptability is 
designated as xb

t, and the vector of the individual with 
the worst adaptability is designated as xc

t [27]. Fl  and 
Fu are the upper and lower limits of zooming factor F, 
respectively. The value for Fl is usually set as 0.1, and the 
value of Fu is usually set as 0.9. Fi is the zooming factor 
of adaptability and its values can be between [0.1,0.9] and 
can be changed with the adaptable changes in the relative 
positions of xa

t and xb
t in the vector space [27].

Adaptability of Crossing rate (CR) 

Crossing rate (CR) can affect the diversity through 
controlling the selection of vector for individuals in 
the specie population and thus can affect the searching 
speed and the successful rate of the differential evolution 
algorithm [28]. In the beginning stage, a relative small 
value for CR should be selected and this is favorable for 
preventing premature and for maintaining the population 
species diversity. But in the later stage of searching, the 
larger value for CR should be selected. This can enhance 
the regional searching capability of this algorithm [28]. 
Based on this idea, Huang proposed a crossing rate-
enhancing strategy [28]. This study made an improvement 
on the basis of this method and proposed a crossing 
rate adaptable strategy. The details of this crossing rate 
adaptable strategy are as follows.  

1( )
1i l u l

gCR CR CR CR
G

+= + −
+        (7)

…where CRi is the adaptive crossing rate; CRu and 
CRl are the upper limit and the lower limit of the CR, 
respectively. The value of CRl is usually 0.3, and the 
value of CRu is 0.9. Of course the values for CRu  and CRl 
can be determined according to the practical problem; 

g is the iterative algebra and G is the maximal iterative 
algebra during the evolution process. 

Improving Mutation Strategy

The standard mutation strategy of differential 
evolution algorithm is DE/rand/1/bin, as shown in 
equation (3). In this mutation operation, xt

i1, x
t
i2, and xt

i3 
are three individual vectors randomly selected from the 
species populations that differ from each other. In recent 
years, some researchers have made many improvements 
to the DE/rand/1/bin. Among them, the DE/best/1/bin  
is the most commonly used. The detailed equation of  
DE/best/1/bin is as follows:

                (8)

…where vi
t+1 is the mutation vector generated; r1, r2 

∈ {1, 2, …, NP} are the integral numbers that are 
different from each other and are different from the 
currently target vector serial number i ; and xt

best is the 
most superior individual in the current generation of the 
species population. This improved mutation strategy 
takes xt

best as the mutation base vector and is no longer 
random searching and thus is favorable for enhancing the 
conversion speed of differential evolution algorithm. 

Technological Process of Improved Differential 
Evolution Algorithm

The improved differential evolution algorithm mainly 
included the steps of the initial species population 
(improvement and determination of control parameters), 

Fig. 1. Technological process of the model.
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Results of land use structure optimization
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mutation (improvement of mutation strategy), crossing, 
and selection, etc. The detailed procedures are shown as 
the following flow scheme (Fig. 1).  

Establishing Multi-Objective Function and 
Processing of Constraints in the Differential 

Evolution Algorithm 

Multi-Objective Function Establishment

By focusing on the target optimization problem, 
in 1896, Italian economist Pareto proposed the first 
solution method from the mathematical prospective, 
i.e., Pareto optimal solution [18]. Because of the better 
results generated with this method, the multi-objective 
optimization problem started drawing the attentions 
of some investigators [19-20]. In particular, since  
the differential evolution algorithm was proposed, a 
number of investigators have proposed various target 
function treatment methods around this evolution 
algorithm [21-22]. To sum up, they can be divided into 
two types:      

Pareto-Based Method  

Currently, a majority of multi-objective differential 
evolution algorithms are Pareto-based [33-34, 36]. They 
can be divided into two subtypes, i.e. predominant type 
and sorted by class type. Between both subtypes, the 
Pareto-predominant type is the standard for selection of 
the most optimal solution in the differential evolution 
selection mechanism. Pareto-sorted by class subtype 
is mainly used in the process of ranking the species 
populations with differential evolution algorithm. This 
method generates the better results in seeking the 
solution for two dimension or three-dimension target 
optimization problems. However, with the increase in the 
number of target dimensions, the quality of optimization 
results may be dramatically reduced. In addition, the 
calculation process is complicated and the applications of 
the results are sometimes not so intuitive. 

Non-Pareto-Based Method

The essence of this method is to convert the multi-
objective optimization problem into single-objective 
optimization problem and then conduct optimization with 
the single-objective optimization method [35]. These 
multi-objective optimization methods mainly include 
the weighted sum method, ε-constraint method, goal 
programming, and game theory, etc. [33-34, 36]. Among 
them, the most commonly used is the weighted sum 
method. Its basic idea is as follows: each optimization 
target is given a corresponding weight. The importance 
of each optimized target in the total optimization target 
is adjusted according to the weight of each target and 
finally converted to the multi-objective into a single-
objective optimization problem. The principle of this 
method is simple, easy to operate, and can basically 

converge the most optimal solution. Thus, in this study, 
we selected the weighted sum method to the treat multi-
objective function with a differential evolution algorithm. 
The basic principles of the weighted sum method are 
described as follows. The detailed equation is as follows:        

min (or max) : f(X)

                       (9) 

…where F(X) is the new optimized function; k is the 
number of target function; and wi is the weight value of 

the ith target function, which generally meets 
k

i
i=1

w =1∑ . 
Because the weight value of each target differs, the multi-
objective optimization results can be obtained through 
adjusting the value of weight coefficient in different 
situations. 

Constraints Processing

The penalty function method is the most commonly 
used method for obtaining the solution for the constraint 
optimization problem. Its basic idea is to use a penalty 
factor to punish constraint function and then the obtained 
penalty term is added to the optimized target function 
and thus a non-constraint generalized target function 
is formulated. The solution for the newly formulated 
generalized target function is obtained with the optimized 
algorithm, and the most optimized solution is finally 
obtained under the action of the penalty term [27]. The 
constraint optimization problem is generally expressed 
as follows:        

min (or max) : f(X)

. .s t     

(X) 0, 1,2,...,
(X) 0, 1,2,...,

i

j

g i l
h j p

≤ =
= =

                 (10)

…where f(X) refers to target function, gi(X) refers 
to inequality constraint, and hj(X) refers to equality 
constraint. Generally, during the treatment process, 
equality constraint is first converted to inequality 
constraint. The detailed method is as follows: relaxation 
factor ε is first introduced. For equality constraint, 
h(X) = 0; then the equality constraint is converted to 
inequality constraint using relaxation factor ε |h(X)|<ε. 
In general, ε is a very small positive number and its value 
is generally the real number of l0-3 or l0-4. On this basis, 
the generalized objective function is as follows:
 

( ) ( ) ( )* ( )F X f X t h Xδ= +           (11)

…where F(X) refers to the generalized objective 
function, f(X) refers to the original objective function; 
δ(t)*h(X) refers to the penalty term, δ(t) refers to penalty 
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strength, and h(X) refers to the penalty factor. If penalty 
strength  δ(t) is a constant and is unchanged during 
the optimization process, it is known as the stationary 
penalty function method; if δ(t) is changed during the 
optimization process, it is known as the non-stationary 
penalty function method. The non-stationary penalty 
function method has more advantages than the stationary 
penalty function method because during the calculation 
process, the penalty strength δ(t) can be continuously 
changed with the iteration number t, and provide certain 
flexibility for the entire opptimization process and make 
the problem-solving process more rapid. In this study, 
we applied the improved non-stationary multi-stage 
assignment penalty function proposed by Wu [27] to treat 
the constraint conditions. The mathematical expression is 
as follows: 

( ( ))

1
( ) ( ( )) ( ) i

m
p Xr

i i
i

h X p X p Xθ
=

= ∑
     (12)

( ) max{0, ( )}i ip X g X=              (13)

          (14)

    (15)

( )t t tδ =                       (16)

…where Equation (12) is used for calculating the penalty 
factor; Equation (13) is for calculating the violation degree 
of constraint conditions; Equation (14) is for calculating 
penalty strength; equation (15) is for calculating multi-
stage assignment function; and equation (16) is for the 
continuing adjustable penalty strength with the change in 
the number of iterations.    

Method Application

Determining Various Parameters for the Improved 
Differential Evolution Algorithm

The parameters of differential evolution algorithm 
mainly include population size (NP), number of variable 
dimension (D), zooming factor (F), and crossing rate 
(CR). Among them, F and CR were determined by 
using adaptable strategy Equation (6) and Equation (7) 

described above, respectively. It can be known according 
the land classification described above. Six types of 
land in the study areas included cultivation land, forest 
land, wetland, waters, intertidal zone, and construction 
land. Thus, the dimensional number of viable D is 6; the 
species population size NP was between 5D and 10D. In 
this study, 10D was selected, i.e. NP = 60.         

Establishing the Optimized Model Based on Improved 
Multi-Objective Differential Evolution Algorithm

(1) Setting variables
According to the results of land classification, 

the land types of the study area included cultivation 
land, forest land, wetland, waters, intertidal zone, 
and construction land. Thus, the variables for land 
use structure optimization model were set as follows: 
x1 (cultivation land), x2 (forest land), x3 (wet land), x4 
(waters), x5 (intertidal zone), and x6 (construction land). 
To seek the solutions for optimization results is to find 
out the quantitative structure of six variables when the 
objective functions reach the maximum values.

(2) Establishing multi-objective functions
The ultimate objective of land use structural 

optimization is to achieve the harmonization and 
unification of three aspects, i.e. ecological benefits, 
economic benefits, and social benefits, i.e., aiming to 
achieve the maximal comprehensive benefits. In this 
study, because of the lack of data and the difficulty of 
quantitation, the social benefit was temperately excluded. 
The ecological benefits and economic benefits were 
mainly taken into account. Thus, there are mainly two 
target functions, i.e., the maximization of ecological 
benefits and the maximization of economic benefits. The 
multi-objective target optimization problem was finally 
converted to single-objective target optimization using 
the weighted sum method.
 – Objective Function I: maximizing ecological benefits.

One of the objectives of land use structure 
optimization is to maximize ecological benefits. The 
calculation process for maximizing benefits is that 
the area of each type of land use be multiplied by the 
corresponding ecological service value per unit area; and 
then sum up and the regional total ecological benefits is 
finally obtained. The detailed equation is as follows:
    

6

1 i i
i=1

max f (X)= (x p )×∑：
           (17)

…where xi is the i type of land use; pi is ecological 
service value per unit area of the i type of land use. 
According to the results calculated by Wang [23], p1 
was 6920 yuan/hm2, p2 was 11940 yuan/hm2; p3 
was 10820 yuan/hm2, p4 was 7640 yuan/hm2, p5 was 
7610 yuan/hm2, and p6 was 0 yaun/hm2.  
 – Target function II: maximizing economic benefits

Another objective of land use structural optimization 
is to reach the maximization of economic benefits.  
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The calculation process of the maximization of  
economic benefits is that the area of each type of land use 
is multiplied by the corresponding economic benefits per 
unit area and then sum up. The regional total economic 
benefits were finally obtained. The detailed calculation 
equation is as follows: 

6

2 i i
i=1

max f (X)= (x q )×∑：
          (18)

…where xi is the i type of land use type; qi is the 
economic benefit per unit area of the i type of land use 
type. According to the data reported in the literature 
[24]. The economic benefit per unit area of each type of  
land use was comprehensively determined as follows: 
q1 was 30000 yuan/hm2, q2 was 4000 yuan/hm2, q3 
was 500000 yuan/hm2, q4 was 27000 yuan/hm2, q5 
was 2000 yuan/hm2, and q6 was 100000 yuan/hm2, 
respectively.  
 – Establish multi-objective functions

In this study, we applied the weighted sum method 
to treat the multi-objective function in differential 
evolution algorithm. With this method, each target 
function is given a weighted coefficient and the multi-
objective target optimization problem was converted 
into a mono-objective optimization problem. The key to 
this method is to determine the weight for each objective 
function. The goal of this study was to conduct land 
use structural optimization under the conditions that 
reflect the priority of ecological benefits and economic 
benefits. In this study, we applied the expert consultant to 
determine the weighted coefficient. The weight of target 
function I (maximization of ecological benefits) finally 
obtained was w1 = 0.65 and that of target function II 
(maximization of economic benefits) was w2 = 0.35. The 
final multi-objective optimized function was expressed 
by the following equation:

2

i i 1 2
i=1

max f(X)= w f (X) 0.65 ( ) 0.35 ( )f X f X= × + ×∑：
               

(19)

…where f(X) is the finally optimized objective function. 
During the optimization problem-solving process, 
only the value of objective function was needed to be 
considered. 

Establishing Constraint Conditions

The constraint conditions for land use structural 
optimization were established according to several 
aspects, including natural conditions, land use status, 
the overall planning of land use (2006-2020), and  
the construction planning of ecological county  
(2008-2020) and the 12 5-year plans for the national 
economy and social development, food safety, and 
economic development in the study area. Taking the 

year 2020 optimization objectives as an example, the 
constraint conditions mainly included the 8 aspects as 
follows:
 – Constraint of total land area

The sum of various land uses should be equal to the 
total land area of the study area, i.e., 

6
2

1
138700.00 hmi

i
x

=

=∑
             (20)

 – Constraint of cultivation land area
With the social and economic development of the 

study area, the cultivation land area still displayed a 
decreasing trend. However, in order to guarantee the 
total yield of food production and ensure food safety, 
it is necessary to maintain certain areas of cultivation 
land. According to the general planning of land use in 
the study area, the cultivation land will be maintained at  
≥ 61675.00 hm2 until 2020. Thus, the cultivation land 
area constraint was:   

2 2
161675.00hm 62768.29hmx≤ ≤    (21)

 – Constraint of forest land area:
According to “Planning of Construction Dawa 

Ecological County (2008-2020),” within the period 
of this planning, the large scale of tree planting and 
forestation will be performed and the forest land area 
will be increased, i.e.:

2
2 2279.78hmx ≥                   (22)

 – Constraint of wetland area:
According to the planning for construction of 

ecological county of the study area, strict measures 
will be taken to protect the wetland during the planning 
period. Thus, during the optimization period of  
2010-2020, the wetland area will be maintained at or less 
than its current status, i.e.:

2
3 14695.97hmx ≤                  (23)

 – Constraint of waters area:
The waters in the study area mainly included natural 

water surface area and artificial aquatic cultivation 
area. According to the overall planning of land use 
and planning of construction of ecological county, the 
natural water surface is protected and at the same time  
the artificial aquatic cultivation area is properly controlled 
or reduced. Thus, during the optimization period of 
2010-2020, the water surface area will be smaller than its 
current status, i.e.: 
   

2
4 14281.84hmx ≤               (24)



895Simulating Land Use Structure Optimization...

 – Constraint of intertidal zone area
According to the results of evaluation of the 

importance of the general planning of land use and 
ecological land use, the intertidal zone area in the study 
area will be properly explored under the conditions 
of ecological protection of the coastal intertidal zone. 
However, in order to protect the ecological environment 
of the study area, the intertidal zone in the study area 
cannot be explored in an unlimited way. According to 
the planning for construction of ecological county, the 
intertidal zone area will be maintained at more than 
22318.39 hm2. Thus, the constraint conditions for the 
intertidal zone area are as follows:   

2 2
522318.39hm 22905.71hmx≤ ≤  (25)

 – Constraint of construction land area
According the launch of the increase/decrease linkage 

project in the social and economic development and 
urban/rural construction land use, the construction area 
in the study area will be increased. However, according 
to the general planning of land use in the study area, 
the construction land area cannot exceed 22608 hm2 
during the optimization period of 2010-2020. Thus, the 
construction land use area will be larger than the current 
status (21768.41hm2), but smaller than the controlled 
quota (22608.00hm2), i.e.: 

2 2
621768.41hm 22608.00hmx≤ ≤  (26)

 – Non-negative constraint conditions
That is the values of all the areas of various types of 

land use were not negative.
   

0       i=1 2 ... 6ix ≥ ，，，，           (27)

Results and Discussion

Results

The establishment of a model in this study 
was achieved by programming under the VC++6.0 
environment. Among which, the dimensional number of 
variable was set as 6, the species population size was set 
as 60, the zooming factor F and crossing rate CR were 
determined through adaptability proposed in the study, 
and the maximal iteration number was 500. By taking 
the year 2010 as the base period and 2020 as the objective 
year to be optimized, we finally obtained the results of 
the land use quantitative structural optimization and 
the comparative analysis of the benefits before and after 
optimization, as shown in Tables 2 and 3. 

Optimization Results of Land Use Structure

It can be seen from Table 2 that after optimization,  
the land use structures were as follows: cultivation land 
area was 62687.39 hm2, accounting for 45.20% of total 
area; forest land area was 62687.39 hm2, accounting 
for 1.85% of total area; wetland area was 14695.97hm2, 
accounting for 10.60% of total area; water areas were 
13823.65hm2, accounting for 9.97% of total area; 
intertidal zone area was 22318.39 hm2, accounting for 
16.09% of total area; and construction land area was 
22318.39 hm2, accounting for 16.30% of total area. 
Comparing the optimized results with land use status in 
2010, it can be seen that after optimization, the cultivation 
land area was reduced by 80.90 hm2 (0.13%); the forest 
area was increased by 286.82 hm2 (12.58%); the wetland 
area was maintained the current status without change; 
the water area was reduced by 458.19 hm2 (3.21%); 
the intertidal zoon area was reduced by 587.32hm2 
(2.56%); and the construction area was increased by 
839.59hm2 (3.86%). Generally, among six types of land 

Table 2. Optimization result of land use quantitative structure in 2020 in the study area.

Variable Land type Area at current 
status (hm2)

Proportion
(%)

Optimized area 
(hm2)

Proportion
(%)

Increased/
decreased area 

(hm2)

Proportion
(%)

x1 Cultivation land 62768.29 45.25 62687.39 45.20 -80.90 -0.13

x2 Forest land 2279.78 1.64 2566.60 1.85 286.82 12.58

x3 Wet land 14695.97 10.60 14695.97 10.60 0.00 0.00

x4 Waters 14281.84 10.30 13823.65 9.97 -458.19 -3.21

x5 Intertidal zoon 22905.71 16.51 22318.39 16.09 -587.32 -2.56

x6 Construction land 21768.41 15.69 22608.00 16.30 839.59 3.86

Sum Total land area 138700.00 100.00 138700.00 100.00 0.00 0.00

Note: because the optimization process of differential evolution algorithm may bring certain randomness, the optimized results  
will be fluctuated up and down within a small range; the data presented in the figure are the average values of several times  
of optimization  
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use, only the intertidal zoon area was unchanged. The 
forest area and construction areas will be increased 
somewhat while cultivation land area, water, and 
intertidal zoon area were reduced to different extents.

It can be seen from the land use structure after 
optimization in the study area that the cultivation land 
area was reduced by 80.90 hm2, which was only reduced 
by 0.13% as compared to cultivation land use status in 
2010. This is consistent with the situation that during 
the planning period, the cultivation land area should be 
larger than inventory cultivation land area and smaller 
than status area. The forest area after optimization was 
increased by 286.82 hm2. This is in agreement with 
the guiding idea that the large scale of tree planning 
and forestation will be launched in the study area for 
construction of an ecological county. The increase in 
forest land area is favorable for enhancing regional 
ecological benefits and can effectively improve the local 
ecological environment. Additionally, among the land 
types for ecological land use, because the wet land, 
natural waters, and intertidal zoon are all naturally 
formed, it is difficult for artificial construction. Thus, in 
order to protect the regional ecological environment, to 
increase the forest land area is a major way to protect 
the environment. After optimization, the wetland area 
was neither increased nor decreased. According to the 
planning for construction of ecological county in the 
study area, a large amount of manpower and material 
will be put and strict ecological protection measures and 
will be applied to protect wetland. Furthermore, from 
the planning prospective, wetland has good ecological 
and economic benefits. Thus, in order to reach optimal 
comprehensive benefits, theoretically, it is reasonable to 
maintain the wetland area. After optimization, the water 
area and intertidal zone area were reduced by 3.21% and 
2.56%, respectively. Although these two types of land 
use belong to ecological land use and have relatively 
high ecological benefits, because the study area has 
maintained relatively high speed of social and economic 
development during the planning period, a relatively high 
and rigid demand for the construction land use should be 
maintained. Thus, under the prerequisite of the ecological 
protection, a part of artificial cultivation water surface 
will be converted into other types of land use and part of 
the intertidal zoon will be further explored and utilized. 
After optimization, the area of construction land use 
was increased by 3.86%. From the planning prospective, 
although construction land use does not have ecological 
benefits, it does have relatively high economic benefits. 
In order to reach the maximal total benefits of target 
objectives, it certainly needs to increase the area for 
construction. This is in accord with demands for general 
land use planning and the rapid social and economic 
development of the study area.

Optimization Result of Benefits

As can be seen from Table 3, after optimization, due 
to the reduction of cultivation land area, the ecological, La
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economic, and total benefits in the study area were 
reduced by 559.8, 2427.0, and 1213.3 thousand yuan, 
respectively. After optimization, the forest land area 
was increased on a large scale. Furthermore, ecological 
benefits land economic benefits of the forest land 
were increased by 3424.6 and 1147.3 thousand yuan, 
respectively. The total benefit of forest land was increased 
by 2627.6 yuan, which was increased by 12.58%. On 
one hand, the increase in forest land is favorable for 
increasing the stability of the ecological system; on 
the other hand, it also compresses the space of land 
supply between food safety and construction land. After 
optimization, the wetland area was unchanged. Thus, 
the ecological benefits and economic benefits of wetland 
were also unchanged. After optimization, the ecological, 
economic, and total benefits of the water were reduced by 
3500.6, 12371.1, and 6605.3 thousand yuan, respectively. 
In addition, after optimization, the ecological, economic, 
and total benefits of the intertidal zoon were reduced by 
4469.5, 1174.6, and 3316.3 thousand yuan, respectively. 
For construction land, the economic and total benefits 
were increased by 83959.0 and 29385.7 thousand yuan, 
respectively. In term of the optimized results, the 
increases in forest land and construction land area, under 
the conditions of unchanging total area; it is unavoidable 
to reduce the other types of land use. Because we need 
to take regional food safety into consideration, the range 
of the reducing cultivation land area is relatively limited. 
Moreover, the wetland area was unchanged. Thus, during 
the optimization process, it is unavoidable to reduce a 
part of the artificial water and the intertidal zone area. 
These are the comprehensively balanced results during 
the optimization process. It can be seen from Table 3  
that after optimization, the annual ecological benefits in 
the study area were reduced by 5105.3 thousand yuan 
while the annual economic benefits were increased 
by 69133.5 yuan. The regional annual total benefit 
was increased by 20878.3 thousand yuan, which was 
increased by 0.44%.

In general, the rapid social and economic 
development in the study area leads to the construction 
land use compressing ecological land use continuously. 

After optimization, the land use structural scheme still 
maintained the increase in the regional total benefits.  
This scheme not only meets the requirement for protection 
of the ecological environment but at the same time also 
meets the requirement for its rapid social and economic 
development.

Discussion

In order to verify the feasibility of the improved 
multi-objective differential evolution algorithm  
proposed in this study, we compared the results  
obtained with this algorithm with those obtained with 
the classic linear programming method. Among which, 
the linear programming method was achieved via  
the optimization function in the Matlab7.0 environment. 
The year 2010 was taken as the base period while  
the year of 2020 was taken as the objective year to be 
optimized. The optimized results obtained with two 
methods were presented in Table 4 as follows.

It can be seen from Table 4 that under the situation 
when the objective function and various constraint 
conditions are the same, the optimized results obtained 
with the improved differential evolution algorithm are 
the same as those obtained with the linear programming 
method, indicating that it is feasible to apply the improved 
differential evolution algorithm in land use structure 
optimization and that the optimized results obtained 
with it are reliable [27]. Additionally, it can also be seen 
from the optimization process that the procedures for 
the improved differential evolution algorithm is simpler 
and clearer and that operational efficiency is higher  
and is more robust [25-26, 27]. However, because the scale 
of optimization problem and the degree of complicity  
are not so big, the advantages of the differential  
evolution algorithm are still not fully demonstrated 
[28-29]. It is believed that in seeking a solution for 
a more complicated non-linear optimized problem, 
the differential evolution algorithm will display more 
advantages than the linear programming method. 
In the follow-up study, we will select regions with 
more land use types and more complex changes as 

Table 4. Comparison of differential evolution algorithm and linear programming optimization. 

Land type 
Situation in 2010 Optimized results with differential 

evolution in 2020
Optimized results with linear  
programming method in 2020

Area (hm2) Proportion (%) Area (hm2) Proportion (%) Area (hm2) Proportion (%)

Cultivation land 62768.29 45.25 62687.39 45.20 62687.39 45.20

Forest land 2279.78 1.64 2566.60 1.85 2566.60 1.85

Wet land 14695.97 10.60 14695.97 10.60 14695.97 10.60

Waters 14281.84 10.30 13823.65 9.97 13823.65 9.97

Intertidal zone 22905.71 16.51 22318.39 16.09 22318.39 16.09

Construction land 21768.41 15.69 22608.00 16.30 22608.00 16.30

Sum 138700 100.00 138700 100.00 138700 100.00
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the study area, and verify the proposed model of 
land use structure optimization from other aspects  
in order to improve it.

Conclusions

In this study, we established a land use structure 
optimization model based on an improved multi-objective 
differential evolution algorithm. The improvements were 
made on the classic differential evolution algorithm 
in two aspects, i.e., the controlling parameters and 
mutation strategy and established multi-objective 
functions by taking economic and ecological benefices 
as the objectives. According to the actual situation of  
the study area, we established multiple ecological 
constraint conditions and finally established an  
improved multi-objective differential evolution 
algorithm. We found the solution for the optimal land 
use quantitative structure for the study area and made 
a comparison between the optimized results with 
those obtained with the classic linear programming. 
The experimental results showed that the annual total  
benefits increased by 20,878,300 yuan, an increase 
of 0.44% in the study area. This showed that the land 
use structure obtained by using the optimization model 
proposed in this paper was more reasonable.

The results indicated that the model established  
in this study has quite good properties and can meet  
the requirement for regional land use structure 
optimization under multi-constraint conditions. The 
models constructed in the study may undoubtedly 
support the process of optimizing land use structure. 
They facilitate determining possible land use planning 
and taking appropriate corrective actions, if necessary. 
These can provide the basis for formulating regional  
land use planning and the sustainable use of land 
resources.
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